Основной недостаток поршневых двигателей внутреннего сгорания. Принцип действия поршневых двигателей внутреннего сгорания

Основной недостаток поршневых двигателей внутреннего сгорания. Принцип действия поршневых двигателей внутреннего сгорания

В настоящее время на ТС применяются в основном четырехтактные поршневые ДВС.

Одноцилиндровый двигатель (рис. а) содержит следующие основные детали: цилиндр 4, картер 2, поршень 6, шатун 3, коленчатый вал 1 и маховик 14. Одним своим концом шатун соединяется шарнирно с поршнем при помощи поршневого пальца 5, а другим концом — также шарнирно с кривошипом коленчатого вала.

При вращении коленчатого вала происходит возвратно-поступательное движение поршня в цилиндре. За один оборот коленчатого вала поршень совершает по одному ходу вниз и вверх. Изменение направления движения поршня происходит в мертвых точках — верхней (ВМТ) и нижней (НМТ).

Верхней мертвой точкой называется самое удаленное от коленчатого вала положение поршня (крайнее верхнее при вертикальном расположении двигателя), а нижней мертвой точкой — самое близкое к коленчатому валу положение поршня (крайнее нижнее при вертикальном расположении двигателя).

Рис. Принципиальная схема (а) одноцилиндрового четырехтактного поршневого двигателя внутреннего сгорания и его схема (б) для определения параметров:
1 — коленчатый вал; 2 — картер; 3 — шатун; 4 — цилиндр; 5 — поршневой палец; 6 — поршень; 7 — впускной клапан; 8 — впускной трубопровод; 9 — распределительный вал; 10 — свеча зажигания (бензиновые и газовые двигатели) или топливная форсунка (дизели); 11 — выпускной трубопровод; 12 — выпускной, клапан; 13 — поршневые кольца; 14 — маховик; D — диаметр цилиндра; r — радиус кривошипа; S — ход поршня

Расстояние S (рис. б) между ВМТ и НМТ называется ходом поршня. Его рассчитывают по формуле:

S = 2r,
где r — радиус кривошипа коленчатого вала.

Ходом поршня и диаметром цилиндра D определяются основные размеры двигателя. В транспортных двигателях отношение S/D составляет 0,7 -1,5. При S/D 1 — длинноходным.

При перемещении поршня вниз из ВМТ в НМТ объем над ним изменяется от минимального до максимального. Минимальный объем цилиндра над поршнем при его положении в ВМТ называется камерой сгорания. Объем цилиндра, освобождаемый поршнем при его перемещении из ВМТ в НМТ, называется рабочим. Сумма рабочих объемов всех цилиндров представляет собой рабочий объем двигателя. Выраженный в литрах, он называется литражом двигателя. Полный объем цилиндра определяется суммой его рабочего объема и объема камеры сгорания. Этот объем заключен над поршнем при его положении в НМТ.

Важной характеристикой двигателя является степень сжатия, определяемая отношением полного объема цилиндра к объему камеры сгорания. Степень сжатия показывает, во сколько раз сжимается поступивший в цилиндр заряд (воздух или топливо-воздушная смесь) при перемещении поршня из НМТ в ВМТ. У бензиновых двигателей степень сжатия составляет 6 — 14, а у дизелей — 14 — 24. Принятая степень сжатия во многом определяет мощность двигателя и его экономичность, а также существенно влияет на токсичность отработавших газов.

Работа поршневого ДВС основана на использовании давления на поршень газов, образующихся при сгорании в цилиндре смесей топлива и воздуха. В бензиновых и газовых двигателях смесь воспламеняется от свечи зажигания 10, а в дизелях — вследствие сжатия. Различают понятия горючей и рабочей смесей. Горючая смесь состоит из топлива и чистого воздуха, а рабочая включает в себя также оставшиеся в цилиндре отработавшие газы.

Совокупность последовательных процессов, периодически повторяющихся в каждом цилиндре двигателя и обеспечивающих его непрерывную работу, называется рабочим циклом. Рабочий цикл четырехтактного двигателя состоит из четырех процессов, каждый из которых происходит за один ход поршня (такт), или пол-оборота коленчатого вала. Полный рабочий цикл осуществляется за два оборота коленчатого вала. Следует отметить, что в общем случае понятия «рабочий процесс» и «такт» не являются синонимами, хотя для четырехтактного поршневого двигателя они практически совпадают.

Рассмотрим рабочий цикл бензинового двигателя.

Содержание страницы

Первый такт рабочего цикла — впуск. Поршень перемещается из ВМТ в НМТ, при этом впускной клапан 7 открыт, а выпускной 12 закрыт, и горючая смесь под действием разрежения поступает в цилиндр. Когда поршень достигает НМТ, впускной клапан закрывается, и цилиндр оказывается заполненным рабочей смесью. У большинства бензиновых двигателей горючая смесь формируется вне цилиндра (в карбюраторе или впускном трубопроводе 8).

Следующий такт — сжатие. Поршень перемещается обратно из НМТ в ВМТ, сжимая рабочую смесь. Это необходимо для ее более быстрого и полного сгорания. Впускной и выпускной клапаны закрыты. Степень сжатия рабочей смеси во время такта сжатия зависит от свойств применяемого бензина, и в первую очередь от его антидетонационной стойкости, характеризуемой октановым числом (у бензинов оно составляет 76 — 98). Чем выше октановое число, тем больше антидетонационная стойкость топлива. При чрезмерно высокой степени сжатия или низкой антидетонационной стойкости бензина может произойти детонационное (в результате сжатия) воспламенение смеси и нарушиться нормальная работа двигателя. К концу такта сжатия давление в цилиндре возрастает до 0,8… 1,2 МПа, а температура достигает 450…500°С.

За тактом сжатия следует расширение (рабочий ход), когда поршень из ВМТ перемещается обратно вниз. В начале этого такта, даже с некоторым опережением, горючая смесь воспламеняется от свечи зажигания 10. При этом впускной и выпускной клапаны закрыты. Смесь сгорает очень быстро с выделением большого количества теплоты. Давление в цилиндре резко возрастает, и поршень перемещается до ЦМТ, приводя во вращение через шатун 3 коленчатый вал 1. В момент сгорания смеси температура в цилиндре повышается до 1800… 2 000 °С, а давление — до 2,5…3,0 МПа.

Последний такт рабочего цикла — выпуск. В течение этого такта впускной клапан закрыт, а выпускной открыт. Поршень, перемещаясь вверх от НМТ к ВМТ, выталкивает оставшиеся в цилиндре после сгорания и расширения отработавшие газы через открытый выпускной клапан в выпускной трубопровод 11. Затем рабочий цикл повторяется.

Рабочий цикл дизеля имеет некоторые отличия от рассмотренного цикла бензинового двигателя. При такте впуска по трубопроводу 8 в цилиндр поступает не горючая смесь, а чистый воздух, который во время следующего такта сжимается. В конце такта сжатия, когда поршень подходит к ВМТ, в цилиндр через специальное устройство — форсунку, ввернутую в верхнюю часть головки цилиндра, под большим давлением впрыскивается дизельное топливо в мелкораспыленном состоянии. Соприкасаясь с воздухом, имеющим вследствие сжатия высокую температуру, частицы топлива быстро сгорают. Выделяется большое количество теплоты, в результате чего температура в цилиндре повышается до 1700…2000 °С, а давление — до 7…8 МПа. Под действием давления газов поршень перемещается вниз — происходит рабочий ход. Такты выпуска у дизеля и бензинового двигателя аналогичны.

Для того чтобы рабочий цикл в двигателе происходил правильно, необходимо согласовать моменты открытия и закрытия его клапанов с частотой вращения коленчатого вала. Это осуществляется следующим образом. Коленчатый вал с помощью зубчатой, цепной или ременной передачи приводит во вращение еще один вал двигателя — распределительный 9, который должен вращаться вдвое медленнее коленчатого. На распределительном валу имеются профилированные выступы (кулачки), которые непосредственно или через промежуточные детали (толкатели, штанги, коромысла) перемещают впускные и выпускные клапаны. За два оборота коленчатого вала каждый клапан, впускной и выпускной, открывается и закрывается только один раз: во время такта впуска и выпуска соответственно.

Уплотнение между поршнем и цилиндром, а также удаление со стенок цилиндра излишнего масла обеспечивают специальные поршневые кольца 13.

Коленчатый вал одноцилиндрового двигателя вращается неравномерно: с ускорением во время рабочего хода и замедлением при остальных, вспомогательных тактах (впуск, сжатие и выпуск). Для повышения равномерности вращения коленчатого вала на его конце устанавливают массивный диск — маховик 14, который во время рабочего хода накапливает кинетическую энергию, а в течение остальных тактов отдает ее, продолжая вращаться по инерции.

Однако несмотря на наличие маховика, коленчатый вал одноцилиндрового двигателя вращается недостаточно равномерно. В моменты воспламенения рабочей смеси картеру двигателя передаются значительные толчки, что быстро выводит из строя сам двигатель и детали его крепления. Поэтому одноцилиндровые двигатели применяются редко, в основном на двухколесных ТС. На других машинах устанавливают многоцилиндровые двигатели, которые обеспечивают более равномерное вращение коленчатого вала за счет того, что рабочий ход поршня в разных цилиндрах совершается неодновременно. Наиболее широкое распространение получили четырех-, шести-, восьми- и двенадцатицилиндровые двигатели, хотя на некоторых ТС используются также трех- и пятицилиндровые.

Многоцилиндровые двигатели обычно имеют рядное или V-образное расположение цилиндров. В первом случае цилиндры установлены в одну линию, а во втором — в два ряда под некоторым углом друг к другу. Этот угол для различных конструкций составляет 60… 120°; у четырех- и шестицилиндровых двигателей он обычно равен 90°. По сравнению с рядными V-образные двигатели такой же мощности имеют меньшую длину, высоту и массу. Нумерация цилиндров производится последовательно: сначала с передней части (носка) нумеруются цилиндры правой (по ходу движения машины) половины двигателя, а затем, также начиная с передней части, левой половины.

Равномерная работа многоцилиндрового двигателя достигается в том случае, если чередование рабочего хода в его цилиндрах происходит через равные углы поворота коленчатого вала. Угловой интервал, через который будут равномерно повторяться одноименные такты в разных цилиндрах, можно определить делением 720° (угол поворота коленчатого вала, при котором совершается полный рабочий цикл) на число цилиндров двигателя. Например, у восьмицилиндрового двигателя угловой интервал равен 90°.

Последовательность чередования одноименных тактов в разных цилиндрах называется порядком работы двигателя. Порядок работы должен быть таким, чтобы в наибольшей степени уменьшить отрицательное влияние на работу двигателя инерционных сил и моментов, возникающих из-за того, что поршни движутся в цилиндрах неравномерно и их ускорение меняется по величине и направлению. У четырехцилиндровых рядных и V-образных двигателей порядок работы может быть такой: 1 — 2 — 4 — 3 или 1 — 3 — 4-2, у шестицилиндровых рядных и V-образных двигателей — соответственно 1 — 5—3 — 6 — 2-4 и 1 — 4 — 2 — 5 — 3 — 6, а у восьмицилиндровых V-образных двигателей — 1 — 5 — 4 — 2- 6 — 3 — 7 — 8.

С целью более эффективного использования рабочего объема цилиндров и повышения их мощности в некоторых конструкциях поршневых двигателей осуществляют наддув воздуха с соответствующим увеличением количества впрыскиваемого топлива. Для обеспечения наддува, т. е. создания на входе в цилиндр избыточного давления, чаще всего применяют газотурбинные компрессоры (турбокомпрессоры). В этом случае для нагнетания воздуха используется энергия отработавших газов, которые, выходя с большой скоростью из цилиндров, вращают турбинное колесо турбокомпрессора, установленное на одном валу с насосным колесом. Кроме турбокомпрессоров применяют также механические нагнетатели, рабочие органы которых (насосные колеса) приводятся во вращение от коленчатого вала двигателя с помощью механической передачи.

Для лучшего наполнения цилиндров горючей смесью (бензиновые двигатели) или чистым воздухом (дизели), а также более полной их очистки от отработавших газов клапаны должны открываться и закрываться не в моменты нахождения поршней в ВМТ и НМТ, а с некоторым опережением или запаздыванием. Моменты открытия и закрытия клапанов, выраженные в градусах через углы поворота коленчатого вала относительно ВМТ и НМТ, называются фазами газораспределения и могут быть представлены в виде круговой диаграммы.

Впускной клапан начинает открываться во время такта выпуска предыдущего рабочего цикла, когда поршень еще не достиг ВМТ. В это время отработавшие газы выходят через выпускной трубопровод я вследствие инерции потока увлекают за собой из открывшегося впускного трубопровода частицы свежего заряда, которые начинают наполнять цилиндр даже при отсутствии разрежения в нем. К моменту прихода поршня в ВМТ и началу его движения вниз впускной клапан уже открыт на значительную величину, и цилиндр быстро наполняется свежим зарядом. Угол а опережения открытия впускного клапана у различных двигателей колеблется в пределах 9…33°. Впускной клапан закроется тогда, когда поршень пройдет НМТ и начнет двигаться вверх на такте сжатия. До этого времени свежий заряд заполняет цилиндр по инерции. Угол р запаздывания закрытия впускного клапана зависит от модели двигателя и составляет 40… 85°.

Рис. Круговая диаграмма фаз газораспределения четырехтактного двигателя:
а — угол опережения открытия впускного клапана; р — угол запаздывания закрытия впускного клапана; у — угол опережения открытия выпускного клапана; б — угол запаздывания закрытия выпускного клапана

Выпускной клапан открывается во время рабочего хода, когда поршень еще не достиг НМТ. При этом работа поршня, необходимая для вытеснения отработавших газов, уменьшается, компенсируя некоторую потерю работы газов из-за раннего открытия выпускного клапана. Угол Y опережения открытия выпускного клапана составляет 40…70°. Выпускной клапан закрывается несколько позднее прихода поршня в ВМТ, т. е. во время такта впуска следующего рабочего цикла. Когда поршень начнет опускаться, оставшиеся газы по инерции еще будут выходить из цилиндра. Угол 5 запаздывания закрытия выпускного клапана составляет 9… 50°.

Угол а + 5, при котором впускной и выпускной клапаны одновременно приоткрыты, называется углом перекрытия клапанов. Вследствие того что этот угол и зазоры между клапанами и их седлами в данном случае малы, утечки заряда из цилиндра практически нет. Кроме того, наполнение цилиндра свежим зарядом улучшается за счет большой скорости потока отработавших газов через выпускной клапан.

Углы опережения и запаздывания, а следовательно, и продолжительность открытия клапанов должны быть тем больше, чем выше частота вращения коленчатого вала двигателя. Это связано с тем, что у быстроходных двигателей все процессы газообмена происходят быстрее, а инерция заряда и отработавших газов не изменяется.

Рис. Принципиальная схема газотурбинного двигателя:
1 — компрессор; 2 — камера сгорания; 3 — турбина компрессора; 4 — силовая турбина; М — вращающий момент, передаваемый к трансмиссии машины

Принцип действия газотурбинного двигателя (ГТД) поясняет рисунок. Воздух из атмосферы засасывается компрессором 2, сжимается в нем и подается в камеру сгорания 2, куда также подается топливо через форсунку. В этой камере происходит процесс горения топлива при постоянном давлении. Газообразные продукты сгорания поступают р турбину компрессору 3, где часть их энергии затрачивается на приведение в действие компрессора, нагнетающего воздух. Оставшаяся часть энергии газов преобразуется в механическую работу вращения свободной или силовой турбины 4, которая через редуктор связана с трансмиссией машины. При этом в турбине компрессора и свободной турбине происходит расширение газа с уменьшением давления от максимального значения (в камере сгорания) до атмосферного.

Рабочие части ГТД в отличие от аналогичных элементов поршневого двигателя постоянно подвергаются воздействию высокой температуры. Поэтому для ее снижения в камеру сгорания ГТД необходимо подавать значительно больше воздуха, чем это требуется для процесса сгорания.

ПОРШНЕВЫЕ ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ

Как было выше сказано, тепловое расширение применяется в двигателях внутреннего сгорания. Но каким образом оно применяется и какую функцию выполняет мы рассмотрим на примере работы поршневого двигателя внутреннего сгорания. Двигателем называется энергосиловая машина, преобразующая какую-либо энергию в механическую работу. Двигатели, в которых механическая работа создается в результате преобразования тепловой энергии, называются тепловыми. Тепловая энергия получается при сжигании какого-либо топлива. Тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию, называется поршневым двигателем внутреннего сгорания.

РАБОЧИЕ ПРОЦЕССЫ В ПОРШНЕВЫХ И КОМБИНИРОВАННЫХ ДВИГАТЕЛЯХ КЛАССИФИКАЦИЯ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

Двигателем внутреннего сгорания называют поршневой тепловой двигатель, в котором процессы сгорания топлива, выделение теплоты и превращение ее в механическую работу происходят непосредственно в цилиндре двигателя.

Двигатели внутреннего сгорания можно разделить на:

газовые турбины;

поршневые двигатели;

реактивные двигатели.

В газовых турбинах сжигание топлива производится в специальной камере сгорания. Газовые турбины, имеющие только вращающиеся детали, могут работать с высоким числом оборотом. Основным недостатком газовых турбин являются невысокая экономичность и работа лопаток в среде газа с высокой температурой.

В поршневом двигателе топливо и воздух, необходимые для сгорания, вводятся в объем цилиндра двигателя. Образующиеся при сгорании газы имеют высокую температуру и создают давление на поршень, перемещая его в цилиндре. Поступательное движение поршня через шатун передается коленчатому валу, установленному в картере, и преобразуется во вращательное движение вала.

В реактивных двигателях мощность увеличивается с повышением скорости движения. Поэтому они распространены в авиации. Недостаток таких двигателей в высокой стоимости.

Наиболее экономичными являются двигатели внутреннего сгорания поршневого типа. Но наличие кривошипно-шатунного механизма, который усложняет конструкцию и ограничивает возможность повышения числа оборотов, является их недостатком.

Двигатели внутреннего сгорания классифицируются по следующим основным признакам:

1. по способу смесеобразования:

а) двигатели с внешним смесеобразованием, когда горючая смесь образуется вне цилиндра. Примером таких двигателей служат газовые и карбюраторные.

б) двигатели с внутренним смесеобразованием, когда горючая смесь образуется непосредственно внутри цилиндра. Например, двигатели на дизеле и двигатели с впрыском легкого топлива в цилиндр.

2. по виду применяемого топлива:

а) двигатели, работающие на легком жидком топливе (бензине, лигроине и керосине);

б) двигатели, работающие на тяжелом жидком топливе (соляровом масле и дизельном топливе);

в) двигатели, работающие на газовом топливе (сжатом и сжиженном газах).

3. по способу воспламенения горючей смеси:

а) двигатели с воспламенением горючей смеси от электрической искры (карбюраторные, газовые и с впрыском легкого топлива);

б) двигатели с воспламенением топлива от сжатия (дизели).

4. по способу осуществления рабочего цикла:

а) четырехтактные. У этих двигателей рабочий цикл совершается за 4 хода поршня или за 2 оборота коленчатого вала;

б) двухтактные. У этих двигателей рабочий цикл в каждом цилиндре совершается за два хода поршня или за один оборот коленчатого вала.

5. по числу и расположению цилиндров:

а) двигатели одно- и многоцилиндровые (двух-, четырех-, шести-, восьмицилиндровые и т.д.)

б) двигатели однорядные (вертикальные и горизонтальные);

в) двигатели двухрядные (V-образные и с противолежащими цилиндрами).

6. по способу охлаждения:

а) двигатели с жидкостным охлаждением;

б) двигатели с воздушным охлаждением.

7. по назначению:

а) двигатели транспортные, устанавливаемые на автомобилях, тракторах, строительных машинах и других транспортных машинах;

б) двигатели стационарные;

в) двигатели специального назначения.

Поршневой двигатель внутреннего сгорания известен более века, и почти cтолько же, а точнее с 1886 года он используется на автомобилях. Принципиальное решение такого вида двигателей было найдено немецкими инженерами Э. Лангеном и Н. Отто в 1867 году. Оно оказалось довольно удачным, для того чтобы обеспечить данному типу двигателей лидирующее положение, сохранившееся в автомобилестроении и в наши дни.Однако изобретатели многих стран неустанно стремились построить иной двигатель, способный по важнейшим техническим показателям превзойти поршневой двигатель внутреннего сгорания. Какие же это показатели? Прежде всего, это так называемый эффективный коэффициент полезного действия (КПД), который характеризует, какое количество теплоты, находившееся в израсходованном топливе, преобразовано в механическую работу. КПД для дизельного двигателя внутреннего сгорания равен 0,39, а для карбюраторного — 0,31. Другими словами, эффективный кпд характеризует экономичность двигателя. Не менее существенны удельные показатели: удельный занимаемый объем (л.с./м3) и удельная масса (кг/л.с.), которые свидетельствуют о компактности и легкости конструкции. Не менее важное значение имеет способность двигателя приспособляться к различным нагрузкам, а также трудоемкость изготовления, простота устройства, уровень шумов, содержание в продуктах сгорания токсичных веществ.При всех положительных сторонах той или иной концепции силовой установки период от начала теоретических разработок до внедрения ее в серийное производство занимает подчас очень много времени. Так, создателю роторно-nоршневого двигателя немецкому изобретателю Ф. Ванкелю потребовалось 30 лет, несмотря на его непрерывную работу, для того чтобы довести свой агрегат до промышленного образца. К месту будет сказано, что почти 30 лет ушло на то, чтобы внедрить дизельный двигатель на серийном автомобиле («Бенц», 1923 г.). Но не технический консерватизм стал причиной столь длительной задержки, а в необходимости исчерпывающе отработать новую конструкцию, то есть создать необходимые материалы и технологию для возможности ее массового производства.Данная страница содержит описание некоторых типов нетрадиционных двигателей, но которые на практике доказали свою жизнеспособность. Поршневой двигатель внутреннего сгорания обладает одним из самых существенных своих недостатков — это достаточно массивный кривошипно-шатунный механизм, ведь с его работой связаны основные потери на трение. Уже в начале нашего века делались попытки избавиться от такого механизма. С того времени было предложено множествo хитроумных конструкций, преобразующих возвратно-поступательное движение поршня во вращательное движение вала такой конструкции.

Бесшатунный двигатель С. Баландина

Преобразование возвратно-поступательного движения поршневой группы во вращательноедвижение осуществляет механизм, который основан на кинематике «точного прямила». То есть, два поршня соединены жестко штоком, воздействующим на коленчатый вал, вращающийся с зубчатыми венцами в кривошипах.Удачное решение задачи нашел советский инженер С. Баландин. В 40 — 50-х годах он спроектировал и построил несколько образцов авиамоторов, где шток, который соединял поршни с преобразующим механизмом, не делал угловых качаний. Такая бесшатунная конструкция, хотя и была в некоторой степени сложнее механизма, занимала меньший объем и на трение обеспечивала меньшие потери. Надо отметить, что аналогичный по конструкции двигатель испытывался в Англии в конце двадцатых годов. Но заслуга С. Баландина состоит в том, что он рассмотрел новые возможности преобразующего механизма без шатуна. Поскольку шток в таком двигателе не качается относительно поршня, тогда можно с другой стороны поршня тоже пристроить камеру сгорания с конструктивно несложным уплотнением штока проходящего через ее крышку.

1 — поршневой шток2 — коленчатый вал3 — подшипник кривошипа4 — кривошип5 — вал отбора мощности6 — поршень7 — ползун штока8 — цилиндрПодобное решение дает возможность почти в 2 раза увеличить мощность агрегата при неизменном габарите. В свою очередь, такой двусторонний рабочий процесс тpебует необходимость по обе стороны поршня (для 2 камер сгорания) устройства газораспределительного механизма с должным усложнением, а, стало быть, и удорожанием конструкции.Видимо, такой двигатель более перспективен для машин, где основное значение имеют высокая мощность, малая масса и небольшой габарит, а себестоимость и трудоемкость имеют второстепенное значение. Последний из бесшатунных авиамоторов С. Баландина, который был построен в 50-х годах (двойного действия с впрыском топлива и турбонаддувом, двигатель ОМ-127РН), имел очень высокие для того времени показатели. Двигатель имел эффективный КПД около 0,34, удельную мощность — 146 л. с./л и удельную массу — 0,6 кг/л. с. По таким характеристикам он был близок к лучшим двигателям гоночных автомобилей.

В начале прошлого века, Чарльз Йел Найт решил, что пора внести в конструкцию двигателей что-то новенькое, и придумал бесклапанный двигатель с гильзовым распределением. К всеобщему удивлению, технология оказалась рабочей. Такие двигатели были весьма эффективными, тихими и надежными. Среди минусов можно отметить потребление масла. Двигатель был запатентован в 1908 году, а позднее появлялся во многих автомобилях, в том числе Mercedes-Benz, Panhard и Peugeot. Технология отошла на задний план, когда двигатели стали быстрее крутиться, с чем традиционная клапанная система справлялась гораздо лучше.

Роторно-поршневой двигатель Ф. Ванкеля

Имеет трехгранный ротор, который совершает планетарное движение округ эксцентрикового вала. Изменяющийся объем трех полостей, образованных стенками ротора и внутренней полости картера, позволяет осуществить рабочий цикл теплового двигателя с расширением газов.С 1964 года на серийных автомобилях, в которых устанавливаются роторно-поршневые двигатели, поршневую функцию выполняет трехгранный ротор. Требуемое в корпусе перемещение ротора относительно эксцентрикового вала обеспечивается планетарно-шестеренчатым согласующим механизмом (см. рисунок). Такой двигатель, при равной мощности с поршневым двигателем, компактнее (имеет меньший на 30 % объем), легче на 10-15%, имеет меньше деталей и лучше уравновешен. Но уступал при этом поршневому двигателю по долговечности, надежности уплотнений рабочих полостей, больше расходовал топлива, а отработавшие газы его содержали больше токсичных веществ. Но, после многолетних доводок, эти недостатки были устранены. Однако производство автомобилей с роторно-поршневыми двигателями серийно, сегодня ограничено. Помимо конструкции Ф. Ванкеля, известны ногочисленные конструкции роторно-поршневых двигателей других изобретателей (Э. Кауэртца, Г. Брэдшоу, Р. Сейрича, Г. Ружицкого и др.). Тем не менее, объективные причины не дали им возможность выйти из стадии экспериментов — зачастую из-за недостаточного технического достоинства.

Газовая двухвальная турбина

Из камеры сгорания газы устремляются на два рабочих колеса турбины, связанных каждое с самостоятельными валами. От правого колеса в действие приводится центробежный компрессор, с левого — отбирается мощность направляемая к колесам автомобиля. Воздух, нагнетаемый им, попадает в камеру сгорания проходя через теплообменник, где подогревается отработавшими газами.Газотурбинная силовая установка при той же мощности компактней и легче двигателя внутреннего сгорания поршневого, а также хорошо уравновешена. Менее токсичны и отработавшие газы. В силу особенностей ее тяговых характеристик, газовая турбина может использоваться на автомобиле без КПП. Технология производства газовых турбин давно освоена в авиационной промышленности. По какой же причине, учитывая ведущиеся уже свыше 30 лет эксперименты с газотурбинными машинами, не идут они в серийное производство? Главная основание — маленький в сравнении с поршневыми двигателями внутреннего сгорания эффективный КПД и низкая экономичность. Также, газотурбинные двигатели достаточно дороги в производстве, так что в настоящее время встречаются они только лишь на экспериментальных автомобилях.

Паровой поршневой двигатель

Пар поочередно подается то две противоположные стороны поршня. Подача его регулируется золотником, который скользит над цилиндром в парораспределительной коробке. В цилиндре шток поршня уплотнен втулкой и соединен с достаточно массивным крейцкопфным механизмом, который преобразует его возвратно-поступательное движение во вращательное.

Двигатель Р.Стирлинга. Двигатель внешнего сгорания

Два поршня (нижний — рабочий, верхний — вытеснительный) соединены с кривошипным механизмом концентричными штоками. Газ, находящийся в полостях над и под вытеснительным поршнем, нагреваясь попеременноот горелки в головке цилиндра, проходит через теплообменник, охладитель и обратно. Циклическое изменение температурыгаза сопровождается изменением объема и соответственно действием на перемещение поршней.Подобные двигателя работали на мазуте, дровах, угле. К их достоинствам относятся долговечность, плавность работы, отличные тяговые характеристики, что позволяет обойтись вообще без коробки передач. Основные недостатки: внушительная масса силового агрегата и низкий КПД. Опытные разработки недавних лет (например, американца Б. Лира и др.) позволили сконструировать агрегаты замкнутого цикла (с полной конденсацией воды), подобрать составы парообразующих жидкостей с показателями более выгодными, чем вода. Тем не менее, на серийное производство автомобилей с паровыми двигателями не осмелился ни один завод за последние годы.Тепловоздушный двигатель, идею которого предложил Р.Стирлинг еще в 1816 году относится к двигателям внешнего сгорания. В нем рабочим телом служат гелий или водород, находящийся под давлением, попеременно охлаждаемые и нагреваемые. Такой двигатель (см. рисунок) в принципе прост, имеет меньший расход топлива, чем внутреннего сгорания поршневые двигатели, при работе не выделяет газов, которые имеют вредные вещества, а также имеет высокий эффективный КПД, равный 0,38. Однако внедре

avtomtk.ru Всё для ремонта и покраски автомобиля.
Яндекс.Метрика
Для любых предложений по сайту: [email protected]