Расчет и выбор мотора редуктора пример. Курсовая работа: Расчет редуктора
Покупка моторного редуктора – инвестиции в технико-технологические бизнес-процессы, которые должны быть не только обоснованными, но и окупаемыми. А окупаемость во многом зависит от выбора мотор-редуктора для конкретных целей. Осуществляется он на основе профессионального расчета мощности, размерности, производительной эффективности, требуемого уровня нагрузки для конкретных целей использования.
Во избежание ошибок, которые могут привести к раннему износу оборудования и дорогостоящим финансовым потерям, расчет мотор-редуктора должны производить квалифицированные специалисты. При необходимости его и другие исследования для выбора редуктора могут провести эксперты компании ПТЦ «Привод».
Выбор по основным характеристикам
Содержание страницы
- 1 Выбор по основным характеристикам
- 2 Выбор по типу редуктора для привода
- 3 Классификация по числу ступеней и типу передачи
- 4 Передаточное число
- 5 Диапазон передаточных чисел для редукторов
- 6 Мощности
- 7 Расчет КПД
- 8 Показатели надежности
- 9 Купить мотор-редуктор
- 10 Передаточное число [I]
- 11 Крутящий момент редуктора
- 12 Эксплуатационный коэффициент (сервис-фактор)
- 13 Мощность привода
- 14 Коэффициент полезного действия (КПД)
- 15 Взрывозащищенные исполнения мотор-редукторов
- 16 Показатели надежности
- 17 5.4 Цилиндрическое колесо 2-й передачи
Длительный срок службы при обеспечении заданного уровня работы оборудования, с которым работает , – ключевая выгода при правильном выборе привода. Наша многолетняя практика показывает, что при определении требований исходить стоит из следующих параметров:
- минимум 7 лет безремонтной работы для червячного механизма;
- от 10–15 лет для цилиндрического привода.
В ходе определения данных для подачи заказа на производство мотор-редуктора ключевыми характеристиками являются:
- мощность подключенного электродвигателя,
- скорость вращения подвижных элементов системы,
- тип питания мотора,
- условия эксплуатации редуктора – режим работы и загрузки.
При расчете мощности электродвигателя для мотор-редуктора за основу берут производительность техники, с которой он будет работать. Производительность редукторного мотора во многом зависит от выходного момента силы и скоростью его работы. Скорость, как и КПД, может меняться при колебаниях напряжения в системе питания двигателя.
Скорость моторного редуктора – это зависимая величина, на которую влияют две характеристики:
- передаточное число;
- частота вращательных движений мотора.
В нашем каталоге есть редукторы с разными скоростными параметрами. Имеются модели с одним или несколькими скоростными режимами. Второй вариант предусматривает наличие системы регулирования скоростных параметров и применяется в случаях, когда во время эксплуатации редуктора необходима периодическая смена скоростных режимов.
Питание двигателя – осуществляется через подачу постоянного или переменного тока. Моторные редукторы постоянного тока рассчитаны на подключение к сети с 1 или 3 фазами (под напряжением 220 и 380В соответственно). Приводы переменного тока работают с напряжением 3, 9, 12, 24 или 27В.
Профессиональный в зависимости от эксплуатационных условий требует определения характера и частоты/интенсивности будущей эксплуатации. В зависимости от характера нагруженной деятельности, на которую рассчитан редуктор, это может быть устройство:
- для работы в безударном режиме, с умеренными или сильными ударами;
- с плавной системой пуска для уменьшения разрушительных нагрузок при запуске и остановке привода;
- для продолжительной эксплуатации с частыми включениями (по количеству запусков в час).
По режиму работы мотор-редуктор может быть рассчитан на продолжительную работу двигателя без перегрева в особо тяжелом, тяжелом, среднем, легком режиме.
Выбор по типу редуктора для привода
Профессиональный расчет с целью выбора редуктора всегда начинается с проработки схемы привода (кинематической). Именно она лежит в основе соответствия выбранного оборудования условиях будущей эксплуатации. Согласно данной схеме, вы можете выбрать класс мотор-редуктора. Варианты следующие.
- :
- одноступенчатая передача, входной вал под прямым углом к выходному валу (скрещенное положение входного вала и выходного вала);
- двухступенчатый механизм с расположением входного вала параллельно или перпендикулярно выходному валу (оси могут располагаться вертикально/горизонтально).
- :
- с параллельным положением входного вала и выходного вала и горизонтальным размещением осей (выходной вал с органом на входе находятся в одной плоскости);
- с размещением осей входного вала и выходного в одной плоскости, но соосно (расположены под любым углом).
- Конически-цилиндрический. В нем ось входного вала пересекается с осью выходного вала под углом 90 градусов.
Ключевое значение при выборе мотор-редуктора имеет положение выходного вала. При комплексном подходе к подбору устройства следует учитывать следующее:
- Цилиндрический и конический моторный редуктор, имея аналогичные червячному приводу вес и размеры, демонстрирует более высокий КПД.
- Передаваемая цилиндрическим редуктором нагрузка в 1,5–2 раза выше, чем у червячного аналога.
- Использование конической и цилиндрической передачи возможно только при размещении по горизонтали.
Классификация по числу ступеней и типу передачи
Тип редуктора Число ступеней Тип передачи Расположение осейЦилиндрический 1 Одна или несколько
цилиндрических Параллельное2 Параллельное/соосное34 ПараллельноеКонический 1 Коническая ПересекающеесяКоническо-цилиндрический 2 Коническая
Цилиндрическая
(одна или несколько) Пересекающееся/
Скрещивающееся34Червячный 1 Червячная(одна
или две) Скрещивающееся2 ПараллельноеЦилиндро-червячный или
червячно- цилиндрический 2 Цилиндрическая
(одна или две)
Червячная (одна) Скрещивающееся3Планетарный 1 Два центральных
зубчатых колеса
и сателлиты (для
каждой ступени) Соосное23Цилиндрическо-планетарный 2 Цилиндрическая
(одна или несколько)
Планетарная
(одна или несколько) Параллельное/соосное34Коническо-планетарный 2 Коническая (одна)
Планетарная
(одна или несколько) Пересекающееся34Червячно-планетарный 2 Червячная (одна)
Планетарная
(одна или несколько) Скрещивающееся34Волновой 1 Волновая (одна) Соосное
Передаточное число
Определение передаточного отношения выполняют по формуле вида:
U= n вх / n вых
- n вх – обороты входного вала (характеристика электродвигателя) в минуту;
- n вых – требуемое число оборотов выходного вала в минуту.
Полученное частное округляется до передаточного числа из типового ряда для конкретных типов мотор-редукторов. Ключевое условие удачного выбора электродвигателя – ограничение по частоте вращения входного вала. Для всех типов приводных механизмов она не должна превышать 1,5 тыс. оборотов в минуту. Конкретный критерий частоты указывается в технических характеристиках двигателя.
Диапазон передаточных чисел для редукторов
Мощности
При вращательных движениях рабочих органов механизмов возникает сопротивление, которое приводит к трению – истиранию узлов. При грамотном выборе редуктора по показателю мощности он способен преодолевать это сопротивление. Потому этот момент имеет большое значение, когда нужно купить мотор-редуктор с долгосрочными целями.
Сама мощность – Р – считается как частное от силы и скорости редуктора. Формула выглядит так:
- где:
M – момент силы; - N – обороты в минуту.
Для выбора нужного мотор-редуктора необходимо сопоставить данные по мощности на входе и выходе – Р1 и Р2 соответственно. Расчет мощности мотор-редукторана выходе рассчитывается так:
- где:
P – мощность редуктора;
Sf – эксплуатационный коэффициент, он же сервис-фактор.
На выходе мощность редуктора (P1 > P2) должна быть ниже, чем на входе. Норма данного неравенства объясняется неизбежными потерями производительности при зацеплении в результате трения деталей между собой.
При расчете мощностей обязательно применять точные данные: из-за разных показателей КПД вероятность ошибки выбора при использовании приблизительных данных близится к 80%.
Расчет КПД
КПД мотор-редуктора является частным деления мощности на выходе и на входе. Рассчитывается в процентах, формула имеет вид:
ñ [%] = (P2/P1) * 100
При определении КПД следует опираться на следующие моменты:
- величина КПД прямо зависит от передаточного числа: чем оно выше, тем выше КПД;
- в ходе эксплуатации редуктора его КПД может снизиться – на него влияет как характер или условия эксплуатации, так и качество используемой смазки, соблюдение графика плановых ремонтов, своевременное обслуживание и т. д.
Показатели надежности
В таблице ниже приведены нормы ресурса основных деталей мотор-редуктора при длительной работе устройства с постоянной активностью.
Ресурс
Купить мотор-редуктор
ПТЦ «Привод» – производитель редукторов и мотор-редукторов с разными характеристиками и КПД, которому не безразличны показатели окупаемости его оборудования. Мы постоянно работаем не только над повышением качества нашей продукции, но и над созданием самых комфортных условий ее приобретения для вас.
Специально для минимизации ошибок выбора нашим клиентам предлагается интеллектуальный . Чтобы воспользоваться этим сервисом, не нужны специальные навыки или знания. Инструмент работает в режиме онлайн и поможет вам определиться с оптимальным типом оборудования. Мы же предложим лучшую цену мотор-редуктора любого типа и полное сопровождение его доставки.
Расчет мощности и подбор мотор — редуктора
Мощность двигателя для преодоления сопротивлений передвижению определяем по формуле
где: V — скорость передвижения крана, м/с.
з — КПД привода. Ориентировочно — 0,9, /3/;
Так как привод механизма состоит из двух раздельных мотор-редукторов, то мощность каждого определяем по формуле:
Подбор мотор-редуктора производим, также по такой величине, как частота вращения выходного вала, которую определяем через частоту вращения колеса, определяемую по формуле
где — диаметр колеса, м;
V — скорость передвижения крана, м/мин;
Принимаем мотор — редуктор типа МП 3 2 ГОСТ 21356 — 75:
МП 3 2 — 63, /1/, имеющего следующие характеристики:
Номинальная мощность, кВт 5,50
Номинальная частота вращения выходного вала, мин- 1 45
Допустимый вращающий момент на выходном валу, Н*м 1000
Тип электродвигателя 4А112М4Р3
Частота вращения электродвигателя, мин- 1 1450
Диаметр конца выходного вала, мм 55
Масса мотор — редуктор, кг 147
Очевидно, что применение мотор — редуктора вместо обычной схемы позволяет снизить вес привода почти в три раза, и тем самым снизить стоимость реконструкции.
Подбор муфты
Для соединения валов мотор — редуктора и колеса принимаем муфту упругую втулочно-пальцевую МУВП-320. Проверим муфту по крутящему моменту, по формуле:
Где К — коэффициент режима работы, К=2,25, /3/;
Крутящий момент на валу муфты, Н*М;
Максимальный крутящий момент, передаваемый муфтой, Нм 4000
Момент инерции муфты, кг·м 2; 0,514
Масса, кг 13,3
Расчет тормозного момента и выбор тормоза
Тормозной момент, по которому подбирается тормоз механизма передвижения, должен быть таким, чтобы обеспечить остановку крана на определенном тормозном пути.
С другой стороны, он не должен быть слишком большим, иначе в процессе торможения может произойти пробуксовывание колес относительно рельса. Поэтому максимальный тормозной момент определяется из условия достаточного сцепления ходовых колес с рельсом.
Максимально допустимое значение, при котором обеспечивается заданный запас сцепления колес с рельсом, равный 1,2; для механизмов передвижения мостовых кранов /3/, определяем по формуле (10):
Принимаем движение при торможении равнозамедленным, получим минимальное время торможения по формуле (11):
Зная время торможения, определим необходимый тормозной момент по формуле:
Где — общая масса крана, кг;
Диаметр ходового колеса, м;
Частота вращения двигателя, мин- 1 ;
Передаточное число редуктора;
з — КПД привода;
(?J)I — суммарный момент инерции;
Где момент инерции ротора, кг*м 2 ;0,040. /10/;
Момент инерции муфты и тормозного шкива: 0,095 кг*м 2 , /3/;
(?J)I = 0,040+0,095=0,135 ;
Определим диаметр тормозного шкива по формуле (28):
Ширина тормозного шкива, мм 95
Диаметр вала, мм 42
Масса, кг 9,2
По определенному тормозному моменту принимаем тормоз ТКГ — 200, имеющего следующие характеристики /11/:
Номинальный тормозной момент, Н*М 250
Диаметр тормозного шкива, мм 200
Ход толкателя, мм 32
Отход колодки, мм 1,0
Тип толкателя, ТГМ-25
Масса, кг 37,6
Проверка на сцепление ходовых колес с рельсом
Проверку на сцепление ходовых колес с рельсом осуществляем по условию (3.13); ускорение пуска определяем по формуле (3.14); для этого по формуле (3.15) определим время пуска; по формуле (3.16) определим момент сопротивления движению крана без груза:
Определим средний пусковой момент по формуле
Где — номинальный момент двигателя, Нм;
Определим номинальный момент по формуле:
Где — мощность двигателя,кВт;
Частота вращения вала двигателя, мин — 1 ;
Условие К сц?1,2 выполняется, пробуксовка ведущих колес крана исключена.
Проверка электродвигателя по условию пуска
Полученное значение времени пуска может удовлетворять условию сцепления ходовых колес с рельсом, но не удовлетворять условию пуска электродвигателя.
Осуществим проверку двигателя по условию пуска, которое записывается:
Где [f] — допустимый коэффициент перегрузки,
[f] = 2,0; /10/;
Пусковой момент двигателя, Нм.
Условие f
Наличие кинематической схемы привода упростит выбор типа редуктора. Конструктивно редукторы подразделяются на следующие виды:
Передаточное число [I]
Передаточное число редуктора рассчитывается по формуле:
I = N1/N2
где
N1 – скорость вращения вала (количество об/мин) на входе;
N2 – скорость вращения вала (количество об/мин) на выходе.
Полученное при расчетах значение округляется до значения, указанного в технических характеристиках конкретного типа редукторов.
Таблица 2. Диапазон передаточных чисел для разных типов редукторов
ВАЖНО!
Скорость вращения вала электродвигателя и, соответственно, входного вала редуктора не может превышать 1500 об/мин. Правило действует для любых типов редукторов, кроме цилиндрических соосных со скоростью вращения до 3000 об/мин. Этот технический параметр производители указывают в сводных характеристиках электрических двигателей.
Крутящий момент редуктора
Крутящий момент на выходном валу – вращающий момент на выходном валу. Учитывается номинальная мощность , коэффициент безопасности [S], расчетная продолжительность эксплуатации (10 тысяч часов), КПД редуктора.
Номинальный крутящий момент – максимальный крутящий момент, обеспечивающий безопасную передачу. Его значение рассчитывается с учетом коэффициента безопасности – 1 и продолжительность эксплуатации – 10 тысяч часов.
Максимальный вращающий момент {M2max] – предельный крутящий момент, выдерживаемый редуктором при постоянной или изменяющейся нагрузках, эксплуатации с частыми пусками/остановками. Данное значение можно трактовать как моментальную пиковую нагрузку в режиме работы оборудования.
Необходимый крутящий момент – крутящий момент, удовлетворяющим критериям заказчика. Его значение меньшее или равное номинальному крутящему моменту.
Расчетный крутящий момент – значение, необходимое для выбора редуктора. Расчетное значение вычисляется по следующей формуле:
Mc2 = Mr2 x Sf ≤ Mn2
где
Mr2 – необходимый крутящий момент;
Sf – сервис-фактор (эксплуатационный коэффициент);
Mn2 – номинальный крутящий момент.
Эксплуатационный коэффициент (сервис-фактор)
Сервис-фактор (Sf) рассчитывается экспериментальным методом. В расчет принимаются тип нагрузки, суточная продолжительность работы, количество пусков/остановок за час эксплуатации мотор-редуктора. Определить эксплуатационный коэффициент можно, используя данные таблицы 3.
Таблица 3. Параметры для расчета эксплуатационного коэффициента
Тип нагрузки К-во пусков/остановок, час Средняя продолжительность эксплуатации, сутки 2-8 9-16h 17-24 Плавный запуск, статичный режим эксплуатации, ускорение массы средней величины 0,75 1 1,25 1,5 10-50 1 1,25 1,5 1,75 80-100 1,25 1,5 1,75 2 100-200 1,5 1,75 2 2,2 Умеренная нагрузка при запуске, переменный режим, ускорение массы средней величины 1 1,25 1,5 1,75 10-50 1,25 1,5 1,75 2 80-100 1,5 1,75 2 2,2 100-200 1,75 2 2,2 2,5 Эксплуатация при тяжелых нагрузках, переменный режим, ускорение массы большой величины 1,25 1,5 1,75 2 10-50 1,5 1,75 2 2,2 80-100 1,75 2 2,2 2,5 100-200 2 2,2 2,5 3
Мощность привода
Правильно рассчитанная мощность привода помогает преодолевать механическое сопротивление трения, возникающее при прямолинейных и вращательных движениях.
Элементарная формула расчета мощности [Р] – вычисление соотношения силы к скорости.
При вращательных движениях мощность вычисляется как соотношение крутящего момента к числу оборотов в минуту:
P = (MxN)/9550
где
M – крутящий момент;
N – количество оборотов/мин.
Выходная мощность вычисляется по формуле:
P2 = P x Sf
где
P – мощность;
Sf – сервис-фактор (эксплуатационный коэффициент).
ВАЖНО!
Значение входной мощности всегда должно быть выше значения выходной мощности, что оправдано потерями при зацеплении:
P1 > P2
Нельзя делать расчеты, используя приблизительное значение входной мощности, так как КПД могут существенно отличаться.
Коэффициент полезного действия (КПД)
Расчет КПД рассмотрим на примере червячного редуктора. Он будет равен отношению механической выходной мощности и входной мощности:
ñ [%] = (P2/P1) x 100
где
P2 – выходная мощность;
P1 – входная мощность.
ВАЖНО!
В червячных редукторах P2
Чем выше передаточное отношение, тем ниже КПД.
На КПД влияет продолжительность эксплуатации и качество смазочных материалов, используемых для профилактического обслуживания мотор-редуктора.
Таблица 4. КПД червячного одноступенчатого редуктора
Передаточное число КПД при a w , мм 40 50 63 80 100 125 160 200 250 8,0 0,88 0,89 0,90 0,91 0,92 0,93 0,94 0,95 0,96 10,0 0,87 0,88 0,89 0,90 0,91 0,92 0,93 0,94 0,95 12,5 0,86 0,87 0,88 0,89 0,90 0,91 0,92 0,93 0,94 16,0 0,82 0,84 0,86 0,88 0,89 0,90 0,91 0,92 0,93 20,0 0,78 0,81 0,84 0,86 0,87 0,88 0,89 0,90 0,91 25,0 0,74 0,77 0,80 0,83 0,84 0,85 0,86 0,87 0,89 31,5 0,70 0,73 0,76 0,78 0,81 0,82 0,83 0,84 0,86 40,0 0,65 0,69 0,73 0,75 0,77 0,78 0,80 0,81 0,83 50,0 0,60 0,65 0,69 0,72 0,74 0,75 0,76 0,78 0,80
Таблица 5. КПД волнового редуктора
Таблица 6. КПД зубчатых редукторов
Взрывозащищенные исполнения мотор-редукторов
Мотор-редукторы данной группы классифицируются по типу взрывозащитного исполнения:
- «Е» – агрегаты с повышенной степенью защиты. Могут эксплуатироваться в любом режиме работы, включая внештатные ситуации. Усиленная защита предотвращает вероятность воспламенений промышленных смесей и газов.
- «D» – взрывонепроницаемая оболочка. Корпус агрегатов защищен от деформаций в случае взрыва самого мотор-редуктора. Это достигается за счет его конструктивных особенностей и повышенной герметичности. Оборудование с классом взрывозащиты «D» может применяться в режимах предельно высоких температур и с любыми группами взрывоопасных смесей.
- «I» – искробезопасная цепь. Данный тип взрывозащиты обеспечивает поддержку взрывобезопасного тока в электрической сети с учетом конкретных условий промышленного применения.
Показатели надежности
Показатели надежности мотор-редукторов приведены в таблице 7. Все значения приведены для длительного режима эксплуатации при постоянной номинальной нагрузке. Мотор-редуктор должен обеспечить 90% указанного в таблице ресурса и в режиме кратковременных перегрузок. Они возникают при пуске оборудования и превышении номинального момента в два раза, как минимум.
Таблица 7. Ресурс валов, подшипников и передач редукторов
По вопросам расчета и приобретения мотор редукторов различных типов обращайтесь к нашим специалистам. можно ознакомиться с каталогом червячных, цилиндрических, планетарных и волновых мотор-редукторов, предлагаемых компанией Техпривод.
Романов Сергей Анатольевич,
руководитель отдела механики
компании Техпривод.
Другие полезные материалы:
Инженер-конструктор является творцом новой техники, и уровнем его творческой работы в большей степени определяются темпы научно-технического прогресса. Деятельность конструктора принадлежит к числу наиболее сложных проявлений человеческого разума. Решающая роль успеха при создании новой техники определяется тем, что заложено на чертеже конструктора. С развитием науки и техники проблемные вопросы решаются с учетом все возрастающего числа факторов, базирующихся на данных различных наук. При выполнении проекта используются математические модели, базирующиеся на теоретических и экспериментальных исследованиях, относящихся к объемной и контактной прочности, материаловедению, теплотехнике, гидравлике, теории упругости, строительной механике. Широко используются сведения из курсов сопротивления материалов, теоретической механики, машиностроительного черчения и т.д. Все это способствует развитию самостоятельности и творческого подхода к поставленным проблемам.
При выборе типа редуктора для привода рабочего органа (устройства) необходимо учитывать множество факторов, важнейшими из которых являются: значение и характер изменения нагрузки, требуемая долговечность, надежность, КПД, масса и габаритные размеры, требования к уровню шума, стоимость изделия, эксплуатационные расходы.
Из всех видов передач зубчатые передачи имеют наименьшие габариты, массу, стоимость и потери на трение. Коэффициент потерь одной зубчатой пары при тщательном выполнении и надлежащей смазке не превышает обычно 0,01. Зубчатые передачи в сравнении с другими механическими передачами обладают большой надежностью в работе, постоянством передаточного отношения из-за отсутствия проскальзывания, возможностью применения в широком диапазоне скоростей и передаточных отношений. Эти свойства обеспечили большое распространение зубчатых передач; они применяются для мощностей, начиная от ничтожно малых (в приборах) до измеряемых десятками тысяч киловатт.
К недостаткам зубчатых передач могут быть отнесены требования высокой точности изготовления и шум при работе со значительными скоростями.
Косозубые колеса применяют для ответственных передач при средних и высоких скоростях. Объем их применения – свыше 30% объема применения всех цилиндрических колес в машинах; и этот процент непрерывно возрастает. Косозубые колеса с твердыми поверхностями зубьев требуют повышенной защиты от загрязнений во избежание неравномерного износа по длине контактных линий и опасности выкрашивания.
Одной из целей выполненного проекта является развитие инженерного мышления, в том числе умение использовать предшествующий опыт, моделировать используя аналоги. Для курсового проекта предпочтительны объекты, которые не только хорошо распространены и имеют большое практическое значение, но и не подвержены в обозримом будущем моральному старению.
Существуют различные типы механических передач: цилиндрические и конические, с прямыми зубьями и косозубые, гипоидные, червячные, глобоидные, одно- и многопоточные и т.д. Это рождает вопрос о выборе наиболее рационального варианта передачи. При выборе типа передачи руководствуются показателями, среди которых основными являются КПД, габаритные размеры, масса, плавность работы и вибронагруженность, технологические требования, предпочитаемое количество изделий.
При выборе типов передач, вида зацепления, механических характеристик материалов необходимо учитывать, что затраты на материалы составляют значительную часть стоимости изделия: в редукторах общего назначения – 85%, в дорожных машинах – 75%, в автомобилях – 10% и т.д.
Поиск путей снижения массы проектируемых объектов является важнейшей предпосылкой дальнейшего прогресса, необходимым условием сбережения природных ресурсов. Большая часть вырабатываемой в настоящее время энергии приходится на механические передачи, поэтому их КПД в известной степени определяет эксплуатационные расходы.
Наиболее полно требования снижения массы и габаритных размеров удовлетворяет привод с использованием электродвигателя и редуктора с внешним зацеплением.
Выбор электродвигателя и кинематический расчёт
По табл. 1.1 примем следующие значения КПД:
– для закрытой зубчатой цилиндрической передачи: h1 = 0,975
– для закрытой зубчатой цилиндрической передачи: h2 = 0,975
Общий КПД привода будет:
h = h1 · … · hn · hподш. 3 · hмуфты2 = 0,975 · 0,975 · 0,993 · 0,982 = 0,886
где hподш. = 0,99 – КПД одного подшипника.
hмуфты = 0,98 – КПД одной муфты.
Угловая скорость на выходном валу будет:
wвых. = 2 · V / D = 2 · 3 · 103 / 320 = 18,75 рад/с
Требуемая мощность двигателя будет:
Pтреб. = F · V / h = 3,5 · 3 / 0,886 = 11,851 кВт
В таблице П. 1 (см. приложение) по требуемой мощности выбираем электродвигатель 160S4, с синхронной частотой вращения 1500 об/мин, с параметрами: Pдвиг.=15 кВт и скольжением 2,3% (ГОСТ 19523–81). Номинальная частота вращения nдвиг. = 1500–1500·2,3/100=1465,5 об/мин, угловая скорость wдвиг. = p · nдвиг. / 30 = 3,14 · 1465,5 / 30 = 153,467 рад/с.
Oбщее передаточное отношение:
u = wвход. / wвых. = 153,467 / 18,75 = 8,185
Для передач выбрали следующие передаточные числа:
Рассчитанные частоты и угловые скорости вращения валов сведены ниже в таблицу:
Мощности на валах:
P1 = Pтреб. · hподш. · h(муфты 1) = 11,851 · 103 · 0,99 · 0,98 = 11497,84 Вт
P2 = P1 · h1 · hподш.= 11497,84 · 0,975 · 0,99 = 11098,29 Вт
P3 = P2 · h2 · hподш. = 11098,29 · 0,975 · 0,99 = 10393,388 Вт
Вращающие моменты на валах:
T1 = P1 / w1 = (11497,84 · 103) / 153,467 = 74920,602 Н·мм
T2 = P2 / w2 = (11098,29 · 103) / 48,72 = 227797,414 Н·мм
T3 = P3 / w3 = (10393,388 · 103) / 19,488 = 533322,455 Н·мм
По таблице П. 1 (см. приложение учебника Чернавского) выбран электродвигатель 160S4, с синхронной частотой вращения 1500 об/мин, с мощностью Pдвиг.=15 кВт и скольжением 2,3% (ГОСТ 19523–81). Номинальная частота вращения с учётом скольжения nдвиг. = 1465,5 об/мин.
Передаточные числа и КПД передач
Рассчитанные частоты, угловые скорости вращения валов и моменты на валах
2. Расчёт 1-й зубчатой цилиндрической передачи
Диаметр ступицы: dступ = (1,5…1,8) · dвала = 1,5 · 50 = 75 мм.
Длина ступицы: Lступ = (0,8…1,5) · dвала = 0,8 · 50 = 40 мм = 50 мм.
5.4 Цилиндрическое колесо 2-й передачи
Диаметр ступицы: dступ = (1,5…1,8) · dвала = 1,5 · 65 = 97,5 мм. = 98 мм.
Длина ступицы: Lступ = (0,8…1,5) · dвала = 1 · 65 = 65 мм
Толщина обода: dо = (2,5…4) · mn =